J Math Chem (2014) 52:1405-1413
DOI 10.1007/s10910-014-0319-z

ORIGINAL PAPER

Ro-vibrational spectroscopy of molecules represented
by a Tietz—Hua oscillator potential

Amlan K. Roy

Received: 6 November 2013 / Accepted: 27 January 2014 / Published online: 7 February 2014
© Springer International Publishing Switzerland 2014

Abstract Accurate low and high-lying bound states of Tietz—Hua oscillator potential
are presented. The radial Schrodinger equation is solved efficiently by means of the
generalized pseudospectral method that enables optimal spatial discreti zation. Both
£ = 0 and rotational states are considered. Ro-vibrational levels of six diatomic
molecules viz., Hy, HE, N», NO, O,, O;“ are obtained with good accuracy. Most
of the states are reported here for the first time. A detailed analysis of variation of
eigenvalues with n, £ quantum numbers is made. Results are compared with literature
data, wherever possible. These are also briefly contrasted with the Morse potential
results.

Keywords Tietz—Hua oscillator - Ro-vibrational levels -
Generalized pseudospectral method

1 Introduction

Construction of the universal potential energy function for molecules has been a chal-
lenging and active field of research in chemical physics. The reason for this is that
the potential energy function succinctly carries the necessary informations relevant
for a molecule. Thus, an enormous number of such functions have been proposed
over the years, after the publication of three-parameter, exponential Morse potential
[1] about 85 years ago. The literature is huge; the following reference gives some of
the older as well as relatively newer empirical functions [1-18]. Usually, larger the
number of parameters in the analytical potential energy function, better the fit with
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experimental data. While a few of these such as Morse, Mie-type and pseudoharmonic
potentials offer exact analytic solutions [16,17], most of these unfortunately can not
be analytically solved for arbitrary vibrational and rotational quantum numbers. This
necessitates the use of approximation schemes for their solutions.

Recently some attention has been paid on an analytic Tietz—Hua (TH) model poten-
tial [8, 11] for ro-vibrational levels in diatomic molecules, expressed in the following
form,

1 — ¢ bn(r=re)

v(r)=D[ } ;b =B —cp), ey

where r, relates to the molecular bond length, 8 the Morse constant, D signifies the
potential well depth, r denotes the internuclear distance, while ¢, implies an opti-
mization parameter obtained from ab initio or Rydberg—Klein—Rees intramolecular
potentials respectively. Note that in the limit of potential constant ¢; approaching
zero, TH potential reduces to the familiar Morse potential [1]. This potential suppos-
edly describes the molecular dynamics (especially at high rotational and vibrational
quantum numbers) more realistically than the traditional Morse potential [19-21].
Also it has been noted that this usually fits the experimental Rydberg—Klein—Rees
curve more closely than the Morse function, especially near the dissociation limit
[11,19-21]. In another study, using Hamilton-Jacobi theory in conjunction with Bohr-
Sommerfeld quantization rule, analytical expressions for rotational-vibrational levels
of diatomic molecules within TH model have been derived [22]. Radial probability
distributions of some diatomic molecules in excited rotational-vibrational states have
also been reported using this route [23]. Very recently, exact analytical solution of the
radial Schrodinger equation with TH potential has been provided for s waves within a
parametric Nikiforov-Uvarov method [24]. In another development, approximate ana-
lytical solutions of the Dirac equation with TH potential were obtained for arbitrary
spin-orbit quantum number using the Pekeris scheme [25].

The purpose of this work is to offer approximate solution of radial Schrédinger
equation with TH potential for molecules. As already mentioned, the £ = O states of
this potential can be obtained in closed analytic form; while eigenvalues and eigen-
functions of £ # 0 states of TH oscillator has not yet been reported in the literature, to
the best of our knowledge. Here we take the help of generalized pseudospectral method
(GPS) for an optimal effective discretization of the relevant Schrodinger equation. This
method has produced very promising results for a number of situations having physi-
cal, chemical interest, including structure, dynamics in atomic and molecular physics.
Accurate eigenvalues, eigenfunctions were obtained for low as well as higher states for
a class of potentials such as spiked harmonic oscillators, logarithmic, rational, power-
law, Hulthén, Yukawa, exponentially screened coulomb potentials, etc. [26-31]. Thus
we make a detailed study on the bound-state spectrum of TH oscillator with particu-
lar reference to diatomic molecules. Ro-vibrational energies and radial densities are
studied for both s-wave and rotational sates having arbitrary low and high vibrational
quantum number. This will also enable us to judge the viability and feasibility of cur-
rent approach in the context of diatomic molecular potentials. To this end, arbitrary
{n, £} states are reported for six molecules, viz., Hy, HF, N», NO, O», O;‘ . Comparison
with literature data are made wherever possible. The article is organized as follows.
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A brief overview of the adopted method is given in Sect. 2. Then a discussion of the
results is presented in Sect. 3, while we conclude with a few remarks in Sect. 4.

2 The GPS method

This method has been discussed in detail earlier (see the references [26-31] and
therein). Thus it suffices to present here only a brief summary of the essential steps
involved.

Without loss of generality, the desired time-independent radial Schrédinger equa-
tion, to be solved, can be written as (atomic units employed unless otherwise men-
tioned),

1 d>  ee+1)
2 dr? 2r2

-~ ==+t —F=+ U(r)i| wn,l(r) = En,ﬁ Iﬂn,e(r) (2)

where v(r) is the TH potential, as given in Eq. (1), while n, £ signify the radial and
angular momentum quantum numbers respectively. The GPS formalism facilitates the
use of a denser mesh at small distance and relatively coarser mesh at large distance
preserving similar accuracy at both the regions.

A key step in this approach is to approximate a function f (x) defined in the interval
x € [—1, 1] by an N-th order polynomial fy(x) exactly at the discrete collocation
points x,

N
FO)E v =D flx)) gitx),  falx)) = flx)). 3)

j=0
Within the Legendre pseudospectral method that we are using currently, xo = —1,
xy =1l,andx;’s (j =1,..., N —1) are determined from the roots of first derivative

of the Legendre polynomial Py (x) with respect to x, i.e., PI’v (xj) =0.The g;(x)sin
Eq. (3) are termed the cardinal functions expressed as,

1 (1 —x?) Py (x)
N(N + 1) Py(x;) X —Xj

gj(x) =— ; “)

satisfying the relation g (x ;) = §/;. At this stage, a transformation r = r(x) is used
to map the semi-infinite domain r € [0, co] onto the finite domain x € [—1, 1], along
with an algebraic nonlinear mapping, r = r(x) = L ll;rj_a, with L, @ = 2L /rmax
being two mapping parameters. Finally introducing a symmetrization procedure gives

a transformed Hamiltonian of the following form,

1 1 4% 1
—— +u(r(x) + v (x). %)

HO==3 70 o2 7o

The advantage lies in the fact that this leads to a symmetric matrix eigenvalue problem
which can be solved readily and efficiently to give accurate eigenvalues, eigenfunctions
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by using standard routines. Note that v,, (x) = O for the above transformation and one
finally obtains a set of discretized coupled equations.

Considerable checks have been made on the convergence of eigenvalues with
respect to the mapping parameters for a decent number of molecular states. After
a series of such test calculations, a choice has been made at the point where the results
changed negligibly with such variations. In this way, a consistent and uniform set of
parameters (7,4 = 500, « = 1 and N = 300) has been used.

3 Results and discussion

At first, we present the calculated ro-vibrational levels within the TH model potential.
For this six representative molecules, viz., Hy, HF, N», NO, O, O;’ are selected; the
respective spectroscopic parameters, adopted from [22], are given in Table 1. The
conversion parameters used in this work are taken from NIST database [32]. These
are as follows: Bohr radius = 0.52917721092 A, Hartree energy = 27.21138505¢V,
and electron rest mass = 5.48577990946 x 10~* u. However, before we proceed, note
that this potential reduces to Rosen-Morse, Morse and Manning—Rosen potential for
negative, zero and positive values of ¢, respectively [22]. Thus two sets of calcula-
tions are performed for Hy and HF in the limit of ¢, = 0. The {0, 0}, {5, 0}, {7, 0}
state energies at such limit are estimated to be —4.481469 (—4.481466), —2.220206
(—2.220195), —1.535804 (—1.535780) eV, where the numbers in the parentheses
refer to similar energies reported in [24], obtained by means of a Nikiforov—Uvarov
method. The first and second integer in square bracket identify the vibrational (radial)
and rotational (angular) quantum numbers respectively. The same three states for
HF molecule read as follows —5.868677 (—5.868710), —3.625307 (—3.625604) and
—2.878718 (—2.878878). In both cases, our GPS results are found to be in excellent
agreement with those from [24] and one notices that when the potential constant cp,
tends to zero, TH energy levels approach that of the familiar Morse oscillator lev-
els. This has been verified for other states as well. Now we present the main results
for s-wave and rotational states for these six molecules in Table 2. Thus, nine low-
lying bound-state energies corresponding to {0, £}, {3, £}, {5, ¢}, having £ = 0, 1,2
are reported. In comparison to other molecular potentials, there is a visible lack of lit-
erature results for TH oscillator potential. No direct results are available for any of the
non-zero angular momentum states. Only the ¢ = 0 states having vibrational quantum

Table 1 Spectroscopic parameters of the molecules, used in present calculation, taken from [22]

Molecule cn w/10723 (g) bp(A™1 re(A1) BAD De(cm™1)
H 0.170066 0.084 1.61890 0.741 1.9506 38318
HF 0.127772 0.160 1.94207 0.917 2.2266 49382
N, —0.032325 1.171 2.78585 1.097 2.6986 79885
NO —0.029477 1.249 2.71559 1.151 2.7534 53341
0, 0.027262 1.377 2.59103 1.207 2.6636 42041
o5 —0.019445 1.377 2.86987 1.116 2.8151 54688
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Table 2 Calculated eigenvalues of TH potential for some low-lying states of six diatomic molecules along
with literature data

n ¢ E, y—De (eV) E,.¢—De (eV) E, ¢—De (eV)
PR Literature PR Literature PR Literature
H» HF Np
0 0 —4.4815797825 —4.481571826 —5.8687195228 —5.868757846 —9.7588058322 —9.7588029855
3 —3.0595425362 —4.4737571516 —8.9066675119
5 —2.2815913849 —2.281533873 —3.6601740988 —3.660498629 —8.3595761578 —8.359551147
0 1 —4.4669801579 —5.8636625262 —9.7583155848
3 —3.0474413866 —4.4692935886 —8.9061913507
5  —2.2710928924 —3.6560952745 —8.3591095263
0 2 —4.4379154622 —5.8535547327 —9.7573351069
3 —3.0233638406 —4.4603723647 —8.9052390449
5 —=2.2502130058 —3.6479433575 —8.3581762808
NO 0, o5
0 0 —6.4959334209 —5.1163223113 —5.116333496 —6.6645714733 —6.6645687718
3 —5.8133374461 —4.5590745476 —5.9898565742
5  —5.3795826206 —4.2058686976 —4.205982010 —5.5597008912 —5.559676435
0 1 —6.4955164040 —5.1159784440 —6.6641689327
3 —5.8129354009 —4.5587436240 —5.9894673742
5  —5.3791906688 —4.2055464879 —5.5593207256
0 2 —6.4946823862 —5.1152907228 —6.6633638662
3 —5.8121313267 —4.5580817907 —5.9886889893
5 —5.3784067819 —4.2049020823 —5.5585604098

PR signifies present result

number n = 0, 5,7 have been reported very recently in a parametrically general-
ized Nikiforov—Uvarov formalism [24]. These are available for all the five molecular
species except NO. In all ten occasions, GPS energies are found to be in very good
agreement with the literature values. The slight discrepancy may be due to the slight
differences in conversion factors used in [24]. Next, in Table 3, nine high-lying ro-
vibrational energies are reported for all the 6 molecular species. Angular quantum
number as high as £ = 30 is considered. To the best of our knowledge, none of these
states have been reported before and it is hoped that these could be useful for future
referencing.

Next we proceed for a detailed investigation on the energy variations for three
selected molecules viz., Hy, HF and NO respectively. The top three panels (a), (b),
(c) in Fig. 1 depict the variations of E, y — D, (in eV) with respect to the angular
quantum number ¢ for Hy, HF and NO. These are given for six values of vibrational
quantum number, viz.,, n = 0,3,6,9, 12, 15 for Hy; seven values of n (n = 20 in
addition to all the six n in Hy) for HF; and nine values of n (n = 25, 30 in addition
to all the seven n in HF) for NO. Note that the ¢ axis goes to 30 for Hy, while for
the other two this is extended to 40. This happens because of the fact that a limited
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Table 3 Calculated eigenvalues of TH potential for some high-lying states of six diatomic molecules

no¢ En¢—De(eV)  n ¢ E,¢—De@V) n ¢ Ep.¢ — De (eV)
H> HF No
0o 15 —2.9921666314 0 15 —5.2763995044 0 10 —9.7318505513
6 —0.9895676615 10 —1.6462931164 3 —8.8804871129
9 —0.3970747424 15 —0.6211626101 5 —8.3339200142
0 20 —2.1321131585 0 20 —4.8508452082 0 15 —9.7000161732
6 —0.4836490402 10 —1.3893569074 3 —8.8495689016
9 —0.0621445548 15 —0.4466120874 5 —8.3036216647
0 25 —1.2522963255 0 30 —3.7271155639 0 20 —9.6559768987
4 —0.3093944960 10 —0.7370870990 3 —8.8067988793
5 —0.1506049691 15 —0.0365890609 5 —8.2617104279
NO 0, oF
0 10 —6.4730053894 0 10 —5.0974162346 0 10 —6.6424390361
3 —5.7912330333 3 —4.5408805335 3 —5.9684580465
5 —5.3580334807 5 —4.1881540596 5 —5.5387993854
0o 15 —6.4459293673 0 15 —5.0750900921 0 15 —6.6163016863
3 —5.7651308474 3 —4.5193963303 3 —5.9431885057
5 —5.3325878765 5 —4.1672367007 5 —5.5141175736
0 20 —6.4084765984 0 20 —5.0442081090 0 20 —6.5801457931
3 —5.7290273103 3 —4.4896808485 3 —5.9082350230
5 —5.2973940820 5 —4.1383066355 5 —5.4799784798

PR signifies Present Result

number of bound states is supported by the potential. Such bound states occur in
larger number for NO and HF than in H,. It may be worthwhile mentioning here that,
the maximum vibrational quantum number vy, and maximum rotational quantum
number £y« for Hy, HF, N, NO, O,, OEL are (22,39), (28,66), (66,260), (56,230),
(52,220) and (56,235) respectively [22]. The above vmax’s are to be contrasted with
the corresponding values of 18, 23, 82, 67, 65 and 58 in Morse potential for the six
molecules under investigation [22]. Much larger differences in vpmax in TH potential
(96) and Morse potential (174) have been observed in I, where the actual value is 107
[33]. The plots for other three molecules are omitted, as their qualitative characteristic
features remain similar to one of the three plots in (a), (b), (c). As one moves along
the Ho-HF-NO series, the plot for a given n series tends to vary rather slowly (rate
of increase slows down), with Hy and NO showing maximum and minimum increase
respectively, such that for NO the plots are quite flat. Also for a given molecule, as
one goes to higher n values, the separation between two successive n plots tends to
decrease. Similar qualitative feature has been recorded earlier in the energy versus £
plot for Hp within a semiclassical approach [22]. Now we turn to the E,, ; — D, (ineV)
versus 7 for fixed £ quantum number for the same three molecules in the bottom panels
(d), (e) and (f) respectively. The n axis in Hp, HF, NO extends to 25, 30 and 40. For H»,
these are studied at seven £, viz., 0,5,10,15,20,25,30, while for the other two molecules
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two more ¢ values of 35, 40 are considered besides the seven value of H». In going
from Ho—HF-NO, the plots for different £ become progressively more closely spaced,
with Hy showing maximum sparsity and in NO the successive separations are too
small to be identified properly in the scale. Another interesting feature is that, rate of
increase in energy slowly increases as one moves the series, producing a nearly linear
structure in NO. Also for Hy, HF, as ¢ takes higher values, the separation between to
adjacent £ tends to grow large. In both the £ and n plots in top and bottom panels,
individual # and ¢ series for a given molecule remain nearly parallel to each other.

4 Conclusion

Tietz—Hua oscillator has been found to be a more realistic analytical potential than the
familiar Morse potential in describing molecular dynamics at moderate as well as high
rotational and vibrational quantum number. In the present work, we have presented
both s—wave and rotational bound states having arbitrary rotational and vibrational
quantum numbers with excellent accuracy. A total of 18 low and moderately high-lying
ro-vibrational levels are given for six diatomic molecules, namely, H,, HF, N, NO,
0Oy, O;“. While the lower states match quite well the lone literature result, many new
states are given here for the first time. Energy changes with respect to n, £ quantum
numbers are discussed in detail for three molecules. In short, a simple accurate and
efficient scheme is offered for this and other similar potentials in molecular physics.
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